Hénon maps were introduced by Michel Hénon as a simplified model of the Poincaré section of the Lorenz model. They are among the most studied discrete-time dynamical systems that exhibit chaotic behavior. Complex Hénon maps in any dimension have been extensively studied over the last three decades, in parallel with the development of pluripotential theory. We will present the dynamical properties of these maps such as the behaviour of point orbits, variety orbits, equidistribution of periodic points and fine ergodic properties of the systems. This talk is based on the work of Bedford, Fornaess, Lyubich, Sibony, Smillie, and on recent work of the speaker in collaboration with Bianchi and Sibony.